The Impact of Artificial Intelligence on the Medical Area: Detailed Review

Main Article Content

Kevser Kubra Kirboga Ecir Ugur Kucuksille Utku Kose


Artificial Intelligence (AI), the most prominent technology of recent times, continues to make a name for itself with many studies not only in the field of software and informatics, but also in the health sector. AI, which has changed the direction of the healthcare industry, has tackled many issues such as data collection, machine learning, drug development, rare and genetic diseases. In this Review, we summarize the effects of AI on the healthcare industry under certain headings. We interpret the developments by discussing the effects, problems, and opportunities of AI from its first application in healthcare to the present day.

Article Details

How to Cite
KIRBOGA, Kevser Kubra; KUCUKSILLE, Ecir Ugur; KOSE, Utku. The Impact of Artificial Intelligence on the Medical Area: Detailed Review. Journal of Multidisciplinary Developments, [S.l.], v. 6, n. 1, p. 54-73, dec. 2021. ISSN 2564-6095. Available at: <>. Date accessed: 04 oct. 2023.
Natural Sciences - Regular Research Paper


[1] Yu, K. H., & Snyder, M. (2016). Omics Profiling in Precision Oncology.Molecular & cellular proteomics : MCP, 15(8), 2525–2536.

[2] Shortliffe, E. (2012). Computer-Based Medical Consultations: MYCIN Vol. 2 Elsevier.

[3] Szolovits, P., Patil, R. S., & Schwartz, W. B. (1988). Artificial intelligence in medical diagnosis. Annals of internal medicine, 108(1), 80–87.

[4] de Dombal, F. T., Leaper, D. J., Staniland, J. R., McCann, A. P., & Horrocks, J. C. (1972). Computer-aided diagnosis of acute abdominal pain. British medical journal, 2(5804), 9–13.

[5] Shortliffe, E. H., Davis, R., Axline, S. G., Buchanan, B. G., Green, C. C., & Cohen, S. N. (1975). Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Computers and biomedical research, an international journal, 8(4), 303–320.

[6] Barnett, G. O., Cimino, J. J., Hupp, J. A., & Hoffer, E. P. (1987). DXplain. An evolving diagnostic decision-support system. JAMA, 258(1), 67–74.
[7] Miller, R. A., McNeil, M. A., Challinor, S. M., Masarie, F. E., Jr, & Myers, J. D. (1986). The INTERNIST-1/QUICK MEDICAL REFERENCE project--status report. The Western journal of medicine, 145(6), 816–822.

[8] Berner, E. S., Webster, G. D., Shugerman, A. A., Jackson, J. R., Algina, J., Baker, A. L., Ball, E. V., Cobbs, C. G., Dennis, V. W., & Frenkel, E. P. (1994). Performance of four computer-based diagnostic systems. The New England journal of medicine, 330(25), 1792–1796.

[9] Szolovits, P. Pauker, S. G. (1978). Categorical and probabilistic reasoning in medical diagnosis. Artif. Intell. 11, 115–144.

[10] Deo R. C. (2015). Machine Learning in Medicine. Circulation, 132(20), 1920–1930.

[11] Roberts, K., Boland, M. R., Pruinelli, L., Dcruz, J., Berry, A., Georgsson, M., Hazen, R., Sarmiento, R. F., Backonja, U., Yu, K. H., Jiang, Y., & Brennan, P. F. (2017). Biomedical informatics advancing the national health agenda: the AMIA 2015 year-in-review in clinical and consumer informatics. Journal of the American Medical Informatics Association : JAMIA, 24(e1), e185–e190.

[12] Lin, D. Y., Blumenkranz, M. S., Brothers, R. J., & Grosvenor, D. M. (2002). The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography. American journal of ophthalmology, 134(2), 204–213.

[13] Ming, S., Xie, K., Lei, X., Yang, Y., Zhao, Z., Li, S., Jin, X., & Lei, B. (2021). Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study. International ophthalmology, 41(4), 1291–1299.

[14] Bangalore Yogananda, C. G., Shah, B. R., Vejdani-Jahromi, M., Nalawade, S. S., Murugesan, G. K., Yu, F. F., Pinho, M. C., Wagner, B. C., Mickey, B., Patel, T. R., Fei, B., Madhuranthakam, A. J., & Maldjian, J. A. (2020). A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. Neuro-oncology, 22(3), 402–411.

[15] Brasil, S., Pascoal, C., Francisco, R., Dos Reis Ferreira, V., Videira, P. A., & Valadão, A. G. (2019). Artificial Intelligence (AI) in Rare Diseases: Is the Future Brighter?. Genes, 10(12), 978.

[16] Carter, H., Douville, C., Stenson, P. D., Cooper, D. N., & Karchin, R. (2013). Identifying Mendelian disease genes with the variant effect scoring tool. BMC genomics, 14 Suppl 3(Suppl 3), S3.

[17] Li, X., Wang, Y., Ye, X., & Liang, P. (2021). Locoregional Combined With Systemic Therapies for Advanced Hepatocellular Carcinoma: An Inevitable Trend of Rapid Development. Frontiers in molecular biosciences, 8, 635243.

[18] Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H., Canese, K., Chetvernin, V., Church, D. M., Dicuccio, M., Federhen, S., Feolo, M., Fingerman, I. M., Geer, L. Y., Helmberg, W., Kapustin, Y., Krasnov, S., Landsman, D., Lipman, D. J., Lu, Z., Madden, T. L., … Ye, J. (2012). Database resources of the National Center for Biotechnology Information. Nucleic acids research, 40(Database issue), D13–D25.

[19] Topol E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature medicine, 25(1), 44–56.

[20] Alashwal, H., El Halaby, M., Crouse, J. J., Abdalla, A., & Moustafa, A. A. (2019). The Application of Unsupervised Clustering Methods to Alzheimer's Disease. Frontiers in computational neuroscience, 13, 31.

[21] Yang, M. H., Yang, F. Y., & Oyang, Y. J. (2013). Application of density estimation algorithms in analyzing co-morbidities of migraine. Network modeling and analysis in health informatics and bioinformatics, 2(2), 95–107.

[22] Sorenson, E. C., Khanin, R., Bamboat, Z. M., Cavnar, M. J., Kim, T. S., Sadot, E., Zeng, S., Greer, J. B., Seifert, A. M., Cohen, N. A., Crawley, M. H., Green, B. L., Klimstra, D. S., & DeMatteo, R. P. (2017). Genome and transcriptome profiling of fibrolamellar hepatocellular carcinoma demonstrates p53 and IGF2BP1 dysregulation. PloS one, 12(5), e0176562.

[23] Kilpinen, H., Waszak, S. M., Gschwind, A. R., Raghav, S. K., Witwicki, R. M., Orioli, A., Migliavacca, E., Wiederkehr, M., Gutierrez-Arcelus, M., Panousis, N. I., Yurovsky, A., Lappalainen, T., Romano-Palumbo, L., Planchon, A., Bielser, D., Bryois, J., Padioleau, I., Udin, G., Thurnheer, S., Hacker, D., … Dermitzakis, E. T. (2013). Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science (New York, N.Y.), 342(6159), 744–747.

[24] Schaefer J, Lehne M, Schepers J, Prasser F, Thun S. (2020). The use of machine learning in rare diseases: a scoping review. Orphanet Journal of Rare Diseases 15. doi:10.1186/s13023-020-01424-6

[25] Li, Q., Zhao, K., Bustamante, C. D., Ma, X., & Wong, W. H. (2019). Xrare: a machine learning method jointly modeling phenotypes and genetic evidence for rare disease diagnosis. Genetics in medicine : official journal of the American College of Medical Genetics, 21(9), 2126–2134.

[26] Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., Cao, K., Liu, D., Wang, G., Xu, Q., Fang, X., Zhang, S., Xia, J., & Xia, J. (2020). Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology, 296(2), E65–E71.

[27] González, G., Ash, S. Y., Vegas-Sánchez-Ferrero, G., Onieva Onieva, J., Rahaghi, F. N., Ross, J. C., Díaz, A., San José Estépar, R., Washko, G. R., & COPDGene and ECLIPSE Investigators (2018). Disease Staging and Prognosis in Smokers Using Deep Learning in Chest Computed Tomography. American journal of respiratory and critical care medicine, 197(2), 193–203.

[28] Tahri Sqalli, M., & Al-Thani, D. (2020). On How Chronic Conditions Affect the Patient-AI Interaction: A Literature Review. Healthcare (Basel, Switzerland), 8(3), 313.

[29] Nimri R. (2020). Decision Support Systems for Insulin Treatment Adjustment in People with Type 1 Diabetes. Pediatric endocrinology reviews : PER, 17(Suppl 1), 170–182.

[30] Contreras, I., & Vehi, J. (2018). Artificial Intelligence for Diabetes Management and Decision Support: Literature Review. Journal of medical Internet research, 20(5), e10775.

[31] Vettoretti, M., Cappon, G., Facchinetti, A., & Sparacino, G. (2020). Advanced Diabetes Management Using Artificial Intelligence and Continuous Glucose Monitoring Sensors. Sensors (Basel, Switzerland), 20(14), 3870.

[32] Zhang Yu-qian,GU Dong-yun. (2019). Review of Computer Aided Diagnosis for Parkinson’s Tremor and Essential Tremor[J].Computer Science, 46(7): 22-29.

[33] Brinker, T. J., Hekler, A., Enk, A. H., Klode, J., Hauschild, A., Berking, C., Schilling, B., Haferkamp, S., Schadendorf, D., Fröhling, S., Utikal, J. S., von Kalle, C., & Collaborators (2019). A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European journal of cancer (Oxford, England : 1990), 111, 148–154.

[34] Tschandl, P., Codella, N., Akay, B. N., Argenziano, G., Braun, R. P., Cabo, H., Gutman, D., Halpern, A., Helba, B., Hofmann-Wellenhof, R., Lallas, A., Lapins, J., Longo, C., Malvehy, J., Marchetti, M. A., Marghoob, A., Menzies, S., Oakley, A., Paoli, J., Puig, S., … Kittler, H. (2019). Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet. Oncology, 20(7), 938–947.

[35] Shen, X., Yu, R. X., Shen, C. B., Li, C. X., Jing, Y., Zheng, Y. J., Wang, Z. Y., Xue, K., Xu, F., Yu, J. B., Meng, R. S., & Cui, Y. (2019). Dermoscopy in China: current status and future prospective. Chinese medical journal, 132(17), 2096–2104.

[36] Vélez-Guerrero, M. A., Callejas-Cuervo, M., & Mazzoleni, S. (2021). Artificial Intelligence-Based Wearable Robotic Exoskeletons for Upper Limb Rehabilitation: A Review. Sensors (Basel, Switzerland), 21(6), 2146.

[37] Fanelli, U. et al. (2020). Role of Artificial Intelligence in Fighting Antimicrobial Resistance in Pediatrics. Antibiotics, 9 (11), s. 767. doi:10.3390/antibiotics9110767

[38] Shillan, D., Sterne, J., Champneys, A., & Gibbison, B. (2019). Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Critical care (London, England), 23(1), 284.

[39] Lee, H. Youm, S. (2021). Development of a Wearable Camera and AI Algorithm for Medication Behavior Recognition. Sensors, 21 (11), s. 3594. doi:10.3390/s21113594.

[40] Shen, C., Chen, A., Luo, C., Zhang, J., Feng, B., & Liao, W. (2020). Using Reports of Symptoms and Diagnoses on Social Media to Predict COVID-19 Case Counts in Mainland China: Observational Infoveillance Study. Journal of medical Internet research, 22(5), e19421.

[41] Bain, E. E., Shafner, L., Walling, D. P., Othman, A. A., Chuang-Stein, C., Hinkle, J., & Hanina, A. (2017). Use of a Novel Artificial Intelligence Platform on Mobile Devices to Assess Dosing Compliance in a Phase 2 Clinical Trial in Subjects With Schizophrenia. JMIR mHealth and uHealth, 5(2), e18.

[42] Wang, H., Xu, J., Li, L., Tian, Y., Xu, D., & Xu, S. (2018). Multi-scale Fusion with Context-aware Network for Object Detection. 2018 24th International Conference on Pattern Recognition (ICPR), 2486-2491.

[43] Al-Faris, M., Chiverton, J., Ndzi, D., & Ahmed, A. I. (2020). A Review on Computer Vision-Based Methods for Human Action Recognition. Journal of imaging, 6(6), 46.

[44] Vrigkas, M., Nikou, C., & Kakadiaris, I. (2015). A Review of Human Activity Recognition Methods. Frontiers Robotics AI, 2, 28.

[45] Zhang Y, Yuan H, Wang J, Zhang X. (2017). Using a CNN-LSTM Model for Sentiment Intensity Prediction. 200-204.

[46] Yeu, Y.H., Shapiai, M.I., Ismail, Z.H., & Fauzi, H. (2019). Investigation on Different Color Spaces on Faster RCNN for Night-Time Human Occupancy Modelling. 2019 IEEE 7th Conference on Systems, Process and Control (ICSPC), 118-121.

[47] Fabris, C., Ozaslan, B., & Breton, M. D. (2019). Continuous Glucose Monitors and Activity Trackers to Inform Insulin Dosing in Type 1 Diabetes: The University of Virginia Contribution. Sensors (Basel, Switzerland), 19(24), 5386.

[48] Altman, N., & Krzywinski, M. (2015). Simple linear regression. Nature methods, 12(11), 999–1000.

[49] Beltran, James. “AI may help brain cancer patients avoid biopsy.” Last modified April 20, 2020. Accessed July 20, 2020.

[50] Yeager, Ashley. “Could AI Make Gene Editing More Accurate?” Last modified April 30, 2019. Accessed July 20, 2020.

[51] Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: a cancer journal for clinicians, 69(1), 7–34.

[52] DeSantis, C. E., Miller, K. D., Dale, W., Mohile, S. G., Cohen, H. J., Leach, C. R., Goding Sauer, A., Jemal, A., & Siegel, R. L. (2019). Cancer statistics for adults aged 85 years and older, 2019. CA: a cancer journal for clinicians, 69(6), 452–467.

[53] Sun, Y., Zhu, S., Ma, K., Liu, W., Yue, Y., Hu, G., Lu, H., & Chen, W. (2019). Identification of 12 cancer types through genome deep learning. Scientific reports, 9(1), 17256.

[54] Jin, P., Ji, X., Kang, W., Li, Y., Liu, H., Ma, F., Ma, S., Hu, H., Li, W., & Tian, Y. (2020). Artificial intelligence in gastric cancer: a systematic review. Journal of cancer research and clinical oncology, 146(9), 2339–2350.

[55] Sultan, A. S., Elgharib, M. A., Tavares, T., Jessri, M., & Basile, J. R. (2020). The use of artificial intelligence, machine learning and deep learning in oncologic histopathology. Journal Of Oral Pathology and Medicine, 49(9), 849-856.

[56] Goldenberg, S. L., Nir, G., & Salcudean, S. E. (2019). A new era: artificial intelligence and machine learning in prostate cancer. Nature reviews. Urology, 16(7), 391–403.

[57] Akazawa, M., & Hashimoto, K. (2020). Artificial Intelligence in Ovarian Cancer Diagnosis. Anticancer research, 40(8), 4795–4800.

[58] Zehir, A., Benayed, R., Shah, R. H., Syed, A., Middha, S., Kim, H. R., Srinivasan, P., Gao, J., Chakravarty, D., Devlin, S. M., Hellmann, M. D., Barron, D. A., Schram, A. M., Hameed, M., Dogan, S., Ross, D. S., Hechtman, J. F., DeLair, D. F., Yao, J., Mandelker, D. L., … Berger, M. F. (2017). Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nature medicine, 23(6), 703–713.

[59] Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., & Lander, E. S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science (New York, N.Y.), 286(5439), 531–537.

[60] Hoskinson, D. C., Dubuc, A. M., & Mason-Suares, H. (2017). The current state of clinical interpretation of sequence variants. Current opinion in genetics & development, 42, 33–39.

[61] Lee, J. S., Das, A., Jerby-Arnon, L., Arafeh, R., Auslander, N., Davidson, M., McGarry, L., James, D., Amzallag, A., Park, S. G., Cheng, K., Robinson, W., Atias, D., Stossel, C., Buzhor, E., Stein, G., Waterfall, J. J., Meltzer, P. S., Golan, T., Hannenhalli, S., … Ruppin, E. (2018). Harnessing synthetic lethality to predict the response to cancer treatment. Nature communications, 9(1), 2546.

[62] Patel, N. M., Michelini, V. V., Snell, J. M., Balu, S., Hoyle, A. P., Parker, J. S., Hayward, M. C., Eberhard, D. A., Salazar, A. H., McNeillie, P., Xu, J., Huettner, C. S., Koyama, T., Utro, F., Rhrissorrakrai, K., Norel, R., Bilal, E., Royyuru, A., Parida, L., Earp, H. S., … Kim, W. Y. (2018). Enhancing Next-Generation Sequencing-Guided Cancer Care Through Cognitive Computing. The oncologist, 23(2), 179–185.

[63] Wang, Y., Tetko, I. V., Hall, M. A., Frank, E., Facius, A., Mayer, K. F., & Mewes, H. W. (2005). Gene selection from microarray data for cancer classification--a machine learning approach. Computational biology and chemistry, 29(1), 37–46.

[64] Yu, K. H., Levine, D. A., Zhang, H., Chan, D. W., Zhang, Z., & Snyder, M. (2016). Predicting Ovarian Cancer Patients' Clinical Response to Platinum-Based Chemotherapy by Their Tumor Proteomic Signatures. Journal of proteome research, 15(8), 2455–2465.

[65] Yu, K. H., Fitzpatrick, M. R., Pappas, L., Chan, W., Kung, J., & Snyder, M. (2018). Omics AnalySIs System for PRecision Oncology (OASISPRO): a web-based omics analysis tool for clinical phenotype prediction. Bioinformatics (Oxford, England), 34(2), 319–320.

[66] Pham, D. L., Xu, C., & Prince, J. L. (2000). Current methods in medical image segmentation. Annual review of biomedical engineering, 2, 315–337.

[67] Jha, S., & Topol, E. J. (2016). Adapting to artificial intelligence: radiologists and pathologists as information specialists. Jama, 316(22), 2353-2354.

[68] Grau, V., Mewes, A.J., Raya, M.L., Kikinis, R., & Warfield, S. (2004). Improved watershed transform for medical image segmentation using prior information. IEEE Transactions on Medical Imaging, 23, 447-458.

[69] Ginneken, B.V., Setio, A.A., Jacobs, C., & Ciompi, F. (2015). Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 286-289.

[70] Lakhani, P. Sundaram, B. (2017).Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284, 574–582.

[71] Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., & Summers, R. M. (2017). Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2097-2106).

[72] Yao, L., Poblenz, E., Dagunts, D., Covington, B., Bernard, D., & Lyman, K. (2017). Learning to diagnose from scratch by exploiting dependencies among labels. arXiv preprint arXiv:1710.10501.

[73] Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2017). Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225.

[75] Arevalo, J., Gonzalez, F. A., Ramos-Pollan, R., Oliveira, J. L., & Guevara Lopez, M. A. (2015). Convolutional neural networks for mammography mass lesion classification. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2015, 797–800.

[76] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484–489.

[77] Shillan, D., Sterne, J., Champneys, A., & Gibbison, B. (2019). Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Critical care (London, England), 23(1), 284.

[78] Chee, M. L. et al. (2021). Artificial Intelligence Applications for COVID-19 in Intensive Care and Emergency Settings: A Systematic Review. International journal of environmental research and public health, 18 (9), s. 4749. doi:10.3390/ijerph18094749.

[79] Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and vascular neurology, 2(4), 230–243.

[80] Álvarez-Machancoses, Ó., DeAndrés Galiana, E. J., Cernea, A., Fernández de la Viña, J., & Fernández-Martínez, J. L. (2020). On the Role of Artificial Intelligence in Genomics to Enhance Precision Medicine. Pharmacogenomics and personalized medicine, 13, 105–119.

[81] Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R. K., Kumar, P. (2021). Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Molecular diversity, 1–46. Advance online publication.

[82] Harrer S, Shah P, Antony B, Hu J (2019) Artificial Intelligence for Clinical Trial Design. Sci, Trends Pharmacol.

[83] Jordan AM (2018) Artificial intelligence in drug design–the storm before the calm? ACS Med Chem Lett.

[84] Lipinski, C. F., Maltarollo, V. G., Oliveira, P. R., da Silva, A., & Honorio, K. M. (2019). Advances and Perspectives in Applying Deep Learning for Drug Design and Discovery. Frontiers in robotics and AI, 6, 108.

[85] Lo, Y. C., Rensi, S. E., Torng, W., & Altman, R. B. (2018). Machine learning in chemoinformatics and drug discovery. Drug discovery today, 23(8), 1538–1546.

[86] Zhang, L., Tan, J., Han, D., & Zhu, H. (2017). From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug discovery today, 22(11), 1680–1685.

[87] Nayarisseri, A., Khandelwal, R., Tanwar, P., Madhavi, M., Sharma, D., Thakur, G., Speck-Planche, A., & Singh, S. K. (2021). Artificial Intelligence, Big Data and Machine Learning Approaches in Precision Medicine & Drug Discovery. Current drug targets, 22(6), 631–655.

[88] Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., & Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nature reviews. Drug discovery, 18(6), 463–477.

[89] Nickolls, J., Dally, W. J. (2010). The GPU Computing Era. IEEE Micro, 30(2), 56–69. doi:10.1109/mm.2010.41