Diagnosis of Chronic Kidney Disease Using Various Features
Main Article Content
Abstract
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
[2] World Kidney Day. (2020). Chronic Kidney Disease. Retrieved from https://www.worldkidneyday.org/facts/chronic-kidneydisease/
[3] National Kidney Foundation. (2020). Global Facts: About Kidney Disease. Retrieved from https://www.kidney.org/kidneydisease/global-facts-aboutkidney-disease#
[4] Al-Hyari, A. Y., Al-Taee, A. M., & Al-Taee, M. A. (2013, December). Clinical decision support system for diagnosis and management of chronic renal failure. In 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT) (pp. 1-6). IEEE.
[5] Gupta, D., Khare, S., & Aggarwal, A. (2016, April). A method to predict diagnostic codes for chronic diseases using machine learning techniques. In 2016 International Conference on Computing, Communication and Automation (ICCCA) (pp. 281-287). IEEE.
[6] Salekin, A., & Stankovic, J. (2016, October). Detection of chronic kidney disease and selecting important predictive attributes. In 2016 IEEE International Conference on Healthcare Informatics (ICHI) (pp. 262-270). IEEE.
[7] Ogunleye, A., & Wang, Q. G. (2018, June). Enhanced XGBoostbased automatic diagnosis system for chronic kidney disease. In 2018 IEEE 14th International Conference on Control and Automation (ICCA) (pp. 805-810). IEEE.
[8] Chen Z, Zhang X, Zhang Z. Clinical risk assessment of patients with chronic kidney disease by using clinical data and multivariate models. International urology and nephrology 2016; 48.12: 2069-2075.